前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的十八大總結主題范文,僅供參考,歡迎閱讀并收藏。
數列
第十八講
數列的綜合應用
一、選擇題
1.(2018浙江)已知,,,成等比數列,且.若,則
A.,
B.,
C.,
D.,
2.(2015湖北)設,.若p:成等比數列;q:,則
A.p是q的充分條件,但不是q的必要條件
B.p是q的必要條件,但不是q的充分條件
C.p是q的充分必要條件
D.p既不是q的充分條件,也不是q的必要條件
3.(2014新課標2)等差數列的公差為2,若,,成等比數列,則的前項和=
A.
B.
C.
D.
4.(2014浙江)設函數,,
,記
,則
A.
B.
C.
D.
二、填空題
5.(2018江蘇)已知集合,.將的所有元素從小到大依次排列構成一個數列.記為數列的前項和,則使得成立的的最小值為
.
6.(2015浙江)已知是等差數列,公差不為零.若,,成等比數列,且,則
,
.
7.(2013重慶)已知是等差數列,,公差,為其前項和,若成等比數列,則.
8.(2011江蘇)設,其中成公比為的等比數列,成公差為1的等差數列,則的最小值是________.
三、解答題
9.(2018江蘇)設是首項為,公差為的等差數列,是首項為,公比為的等比數列.
(1)設,若對均成立,求的取值范圍;
(2)若,證明:存在,使得對均成立,并求的取值范圍(用表示).
10*.(2017浙江)已知數列滿足:,.
證明:當時
(Ⅰ);
(Ⅱ);
(Ⅲ).
*根據親所在地區選用,新課標地區(文科)不考.
11.(2017江蘇)對于給定的正整數,若數列滿足
對任意正整數總成立,則稱數列是“數列”.
(1)證明:等差數列是“數列”;
(2)若數列既是“數列”,又是“數列”,證明:是等差數列.
12.(2016年四川)已知數列的首項為1,為數列的前項和,,其中,
(Ⅰ)若成等差數列,求數列的通項公式;
(Ⅱ)設雙曲線的離心率為,且,求.
13.(2016年浙江)設數列{}的前項和為.已知=4,=2+1,.
(I)求通項公式;
(II)求數列{}的前項和.
14.(2015重慶)已知等差數列滿足,前3項和.
(Ⅰ)求的通項公式;
(Ⅱ)設等比數列滿足,,求前項和.
15.(2015天津)已知是各項均為正數的等比數列,是等差數列,且,,.
(Ⅰ)求和的通項公式;
(Ⅱ)設,,求數列的前項和.
16.(2015四川)設數列(=1,2,3…)的前項和滿足,且,+1,成等差數列.
(Ⅰ)求數列的通項公式;
(Ⅱ)設數列的前項和為,求.
17.(2015湖北)設等差數列的公差為,前項和為,等比數列的公比為,已知,,,.
(Ⅰ)求數列,的通項公式;
(Ⅱ)當時,記=,求數列的前項和.
18.(2014山東)已知等差數列的公差為2,前項和為,且,,成等比數列.
(Ⅰ)求數列的通項公式;
(Ⅱ)令=求數列的前項和.
19.(2014浙江)已知數列和滿足.若為等比數列,且
(Ⅰ)求與;
(Ⅱ)設.記數列的前項和為.
(ⅰ)求;
(ⅱ)求正整數,使得對任意,均有.
20.(2014湖南)已知數列{}滿足
(Ⅰ)若{}是遞增數列,且成等差數列,求的值;
(Ⅱ)若,且{}是遞增數列,{}是遞減數列,求數列{}的通項公式.
21.(2014四川)設等差數列的公差為,點在函數的圖象上().
(Ⅰ)若,點在函數的圖象上,求數列的前項和;
(Ⅱ)若,函數的圖象在點處的切線在軸上的截距為,求數列
的前項和.
22.(2014江蘇)設數列的前項和為.若對任意正整數,總存在正整數,使得,則稱是“H數列”.
(Ⅰ)若數列的前n項和(N),證明:
是“H數列”;
(Ⅱ)設
是等差數列,其首項,公差.若
是“H數列”,求的值;
(Ⅲ)證明:對任意的等差數列,總存在兩個“H數列”和,使得(N)成立.
23.(2013安徽)設數列滿足,,且對任意,函數
,滿足
(Ⅰ)求數列的通項公式;
(Ⅱ)若,求數列的前項和.
24.(2013廣東)設各項均為正數的數列的前項和為,滿足
且構成等比數列.
(Ⅰ)證明:;
(Ⅱ)求數列的通項公式;
(Ⅲ)證明:對一切正整數,有.
25.(2013湖北)已知是等比數列的前項和,,,成等差數列,
且.
(Ⅰ)求數列的通項公式;
(Ⅱ)是否存在正整數,使得?若存在,求出符合條件的所有的集合;
若不存在,說明理由.
26.(2013江蘇)設是首項為,公差為的等差數列,是其前項和.
記,,其中為實數.
(Ⅰ)
若,且,,成等比數列,證明:;
(Ⅱ)
若是等差數列,證明:.
27.
(2012山東)已知等差數列的前5項和為105,且.
(Ⅰ)求數列的通項公式;
(Ⅱ)對任意,將數列中不大于的項的個數記為.求數列的前m項和.
28.(2012湖南)某公司一下屬企業從事某種高科技產品的生產.該企業第一年年初有資金2000萬元,將其投入生產,到當年年底資金增長了50%.預計以后每年資金年增長率與第一年的相同.公司要求企業從第一年開始,每年年底上繳資金萬元,并將剩余資金全部投入下一年生產.設第年年底企業上繳資金后的剩余資金為萬元.
(Ⅰ)用表示,并寫出與的關系式;
(Ⅱ)若公司希望經過(≥3)年使企業的剩余資金為4000萬元,試確定企業每年上繳資金的值(用表示).
29.(2012浙江)已知數列的前項和為,且=,,數列滿足,.
(Ⅰ)求;
(Ⅱ)求數列的前項和.
30.(2012山東)在等差數列中,,
(Ⅰ)求數列的通項公式;
(Ⅱ)對任意的,將數列中落入區間內的項的個數為,求數列的前項和.
31.(2012江蘇)已知各項均為正數的兩個數列和滿足:.
(Ⅰ)設,求證:數列是等差數列;
(Ⅱ)設,且是等比數列,求和的值.
32.(2011天津)已知數列滿足,
.
(Ⅰ)求的值;
(Ⅱ)設,證明是等比數列;
(Ⅲ)設為的前項和,證明
33.(2011天津)已知數列與滿足:,
,且.
(Ⅰ)求的值;
(Ⅱ)設,證明:是等比數列;
(Ⅲ)設證明:.
34.(2010新課標)設數列滿足
(Ⅰ)求數列的通項公式;
(Ⅱ)令,求數列的前項和.
35.(2010湖南)給出下面的數表序列:
其中表(=1,2,3
)有行,第1行的個數是1,3,5,,21,從第2行起,每行中的每個數都等于它肩上的兩數之和.
(Ⅰ)寫出表4,驗證表4各行中數的平均數按從上到下的順序構成等比數列,并將結論推廣到表(≥3)(不要求證明);
(Ⅱ)每個數列中最后一行都只有一個數,它們構成數列1,4,12,,記此數列為,求和:
.
專題六
數列
第十八講
數列的綜合應用
答案部分
1.B【解析】解法一
因為(),所以
,所以,又,所以等比數列的公比.
若,則,
而,所以,
與矛盾,
所以,所以,,
所以,,故選B.
解法二
因為,,
所以,則,
又,所以等比數列的公比.
若,則,
而,所以
與矛盾,
所以,所以,,
所以,,故選B.
2.A【解析】對命題p:成等比數列,則公比且;
對命題,
①當時,成立;
②當時,根據柯西不等式,
等式成立,
則,所以成等比數列,
所以是的充分條件,但不是的必要條件.
3.A【解析】,,成等比數列,,即,解得,所以.
4.B【解析】在上單調遞增,可得,
,…,,
=
在上單調遞增,在單調遞減
,…,,,
,…,
==
=
在,上單調遞增,在,上單調遞減,可得
因此.
5.27【解析】所有的正奇數和()按照從小到大的順序排列構成,在數列
中,前面有16個正奇數,即,.當時,,不符合題意;當時,,不符合題意;當時,,不符合題意;當時,,不符合題意;……;當時,=
441
+62=
503
+62=546>=540,符合題意.故使得成立的的最小值為27.
6.【解析】由題可得,,故有,又因為,即,所以.
7.64【解析】由且成等比數列,得,解得,故.
8.【解析】設,則,由于,所以,故的最小值是.
因此,所以.
9.【解析】(1)由條件知:,.
因為對=1,2,3,4均成立,
即對=1,2,3,4均成立,
即11,13,35,79,得.
因此,的取值范圍為.
(2)由條件知:,.
若存在,使得(=2,3,···,+1)成立,
即(=2,3,···,+1),
即當時,滿足.
因為,則,
從而,,對均成立.
因此,取=0時,對均成立.
下面討論數列的最大值和數列的最小值().
①當時,,
當時,有,從而.
因此,當時,數列單調遞增,
故數列的最大值為.
②設,當時,,
所以單調遞減,從而.
當時,,
因此,當時,數列單調遞減,
故數列的最小值為.
因此,的取值范圍為.
10.【解析】(Ⅰ)用數學歸納法證明:
當時,
假設時,,
那么時,若,則,矛盾,故.
因此
所以
因此
(Ⅱ)由得
記函數
函數在上單調遞增,所以=0,
因此
故
(Ⅲ)因為
所以得
由得
所以
故
綜上,
.
11.【解析】證明:(1)因為是等差數列,設其公差為,則,
從而,當時,
,
所以,
因此等差數列是“數列”.
(2)數列既是“數列”,又是“數列”,因此,
當時,,①
當時,.②
由①知,,③
,④
將③④代入②,得,其中,
所以是等差數列,設其公差為.
在①中,取,則,所以,
在①中,取,則,所以,
所以數列是等差數列.
12.【解析】(Ⅰ)由已知,
兩式相減得到.
又由得到,故對所有都成立.
所以,數列是首項為1,公比為q的等比數列.
從而.
由成等差數列,可得,所以,故.
所以.
(Ⅱ)由(Ⅰ)可知,.
所以雙曲線的離心率.
由解得.所以,
13.【解析】(1)由題意得:,則,
又當時,由,
得,
所以,數列的通項公式為.
(2)設,,.
當時,由于,故.
設數列的前項和為,則.
當時,,
所以,.
14.【解析】(Ⅰ)設的公差為,則由已知條件得
化簡得
解得,.
故通項公式,即.
(Ⅱ)由(Ⅰ)得.
設的公比為,則,從而.
故的前項和
.
15.【解析】(Ⅰ)設數列的公比為q,數列的公差為d,由題意,由已知,有
消去d,整數得,又因為>0,解得,所以的通項公式為,數列的通項公式為.
(Ⅱ)解:由(Ⅰ)有
,設的前n項和為,則
,
,
兩式相減得,
所以.
16.【解析】(Ⅰ)
由已知,有
=(n≥2),即(n≥2),
從而,.
又因為,+1,成等差數列,即+=2(+1),
所以+4=2(2+1),解得=2.
所以,數列是首項為2,公比為2的等比數列,故.
(Ⅱ)由(Ⅰ)得,
所以=.
17.【解析】(Ⅰ)由題意有,
即,
解得
或
故或
(Ⅱ)由,知,,故,于是
,
①
.
②
①-②可得
,
故.
18.【解析】(Ⅰ)
解得
(Ⅱ),
當為偶數時
.
19.【解析】(Ⅰ)由題意,,,
知,又由,得公比(舍去),
所以數列的通項公式為,
所以,
故數列的通項公式為,;
(Ⅱ)(i)由(Ⅰ)知,,
所以;
(ii)因為;
當時,,
而,
得,
所以當時,,
綜上對任意恒有,故.
20.【解析】(I)因為是遞增數列,所以。而,
因此又成等差數列,所以,因而,
解得
當時,,這與是遞增數列矛盾。故.
(Ⅱ)由于是遞增數列,因而,于是
①
但,所以
.
②
又①,②知,,因此
③
因為是遞減數列,同理可得,故
④
由③,④即知,。
于是
.
故數列的通項公式為.
21.【解析】(Ⅰ)點在函數的圖象上,所以,又等差數列的公差為,所以
因為點在函數的圖象上,所以,所以
又,所以
(Ⅱ)由,函數的圖象在點處的切線方程為
所以切線在軸上的截距為,從而,故
從而,,
所以
故.
22.【解析】(Ⅰ)當時,
當時,
時,,當時,,是“H數列”.
(Ⅱ)
對,使,即
取得,
,,又,,.
(Ⅲ)設的公差為d
令,對,
,對,
則,且為等差數列
的前n項和,令,則
當時;
當時;
當時,由于n與奇偶性不同,即非負偶數,
因此對,都可找到,使成立,即為“H數列”.
的前n項和,令,則
對,是非負偶數,
即對,都可找到,使得成立,即為“H數列”
因此命題得證.
23.【解析】(Ⅰ)由,
所以,
是等差數列.
而,,,,
(Ⅱ)
24.【解析】(Ⅰ)當時,,
(Ⅱ)當時,,
,
當時,是公差的等差數列.
構成等比數列,,,
解得.
由(Ⅰ)可知,
是首項,公差的等差數列.
數列的通項公式為.
(Ⅲ)
25.【解析】(Ⅰ)設數列的公比為,則,.
由題意得
即
解得
故數列的通項公式為.
(Ⅱ)由(Ⅰ)有
.
若存在,使得,則,即
當為偶數時,,
上式不成立;
當為奇數時,,即,則.
綜上,存在符合條件的正整數,且所有這樣的n的集合為.
26.【證明】(Ⅰ)若,則,,又由題,
,,
是等差數列,首項為,公差為,,又成等比數列,
,,,,,,
,().
(Ⅱ)由題,,,若是等差數列,則可設,是常數,關于恒成立.整理得:
關于恒成立.,
.
27.【解析】(Ⅰ)由已知得:
解得,
所以通項公式為.
(Ⅱ)由,得,即.
,
是公比為49的等比數列,
.
28.【解析】(Ⅰ)由題意得,
,
.
(Ⅱ)由(Ⅰ)得
.
整理得
.
由題意,
解得.
故該企業每年上繳資金的值為繳時,經過年企業的剩余資金為4000元.
29.【解析】(Ⅰ)由=,得
當=1時,;
當2時,,.
由,得,.
(Ⅱ)由(1)知,
所以,
,
,.
30.【解析】:(Ⅰ)由a3+a4+a5=84,a5=73可得而a9=73,則
,,
于是,即.
(Ⅱ)對任意m∈,,則,
即,而,由題意可知,
于是
,
即.
31.【解析】(Ⅰ)由題意知,
所以,從而
所以數列是以1為公差的等差數列.
(Ⅱ).所以,
從而
(*)
設等比數列的公比為,由知下證.
若,則.故當,,與(*)矛盾;
若,則.故當,,與(*)矛盾;
綜上:故,所以.
又,所以是以公比為的等比數列,若,
則,于是,又由,得,
所以中至少有兩項相同,矛盾.所以,從而,
所以.
32.【解析】(Ⅰ)由,可得
又,
當
當
(Ⅱ)證明:對任意
①
②
②-①,得
所以是等比數列。
(Ⅲ)證明:,由(Ⅱ)知,當時,
故對任意
由①得
因此,
于是,
故
33.【解析】(Ⅰ)由可得
又
當時,,由,,可得;
當時,,可得;
當時,,可得;
(Ⅱ)證明:對任意
①
②
③
②—③,得
④
將④代入①,可得
即
又
因此是等比數列.
(Ⅲ)證明:由(II)可得,
于是,對任意,有
將以上各式相加,得
即,
此式當k=1時也成立.由④式得
從而
所以,對任意,
對于=1,不等式顯然成立.
所以,對任意
34.【解析】(Ⅰ)由已知,當n≥1時,
.而
所以數列{}的通項公式為.
(Ⅱ)由知
①
從而
②
①-②得
.
即
.
35.【解析】(Ⅰ)表4為
1
3
5
7
4
8
12
12
20
32
它的第1,2,3,4行中的數的平均數分別為4,8,16,32.
它們構成首項為4,公比為2的等比數列.將結這一論推廣到表(≥3),即表各行中的數的平均數按從上到下的順序構成首項為,公比為2的等比數列.
將這一結論推廣到表,即表各行中的數的平均數按從上到下的順序構成首項為,公比為2的等比數列.
簡證如下(對考生不作要求)
首先,表的第1行1,3,5,…,是等差數列,其平均數為;其次,若表的第行,,…,是等差數列,則它的第行,,…,也是等差數列.由等差數列的性質知,表的第行中的數的平均數與行中的數的平均數分別是
,.
由此可知,表各行中的數都成等差數列,且各行中的數的平均數按從上到下的順序構成首項為,公比為2的等比數列.
(Ⅱ)表第1行是1,3,5,…,2-1,其平均數是
由(Ⅰ)知,它的各行中的數的平均數按從上到下的順序構成首項為,公比為2的等比數列(從而它的第行中的數的平均數是),于是表中最后一行的唯一一個數為.因此
.(=1,2,3,
…,