日韩精品高清自在线,国产女人18毛片水真多1,欧美成人区,国产毛片片精品天天看视频,a毛片在线免费观看,午夜国产理论,国产成人一区免费观看,91网址在线播放
公務員期刊網 精選范文 建筑結構設計論文范文

建筑結構設計論文精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的建筑結構設計論文主題范文,僅供參考,歡迎閱讀并收藏。

建筑結構設計論文

第1篇:建筑結構設計論文范文

1.1高層建筑結構受力特征

高層建筑結構在模型上一般可以假想為一個從地基出發并不斷上升的懸臂構件。高層建筑主要承受水平作用效應和豎向作用效應,水平作用效應一般指風荷載,在抗震設防地區還包括水平地震作用。豎向作用效應則一般由結構自重荷載產生,在抗震設防烈度為8、9度時的大跨度和長懸臂結構及9度時的高層建筑,還應考慮豎向地震作用。在這些作用效應下,結構整體及主體構件均需具有足夠的承載能力、剛度和延性,整體的設計注重概念,應符合相關規定中對于建筑形體的規則性要求,包括平面布置的規則性及豎向布置的規則性。結構在抵抗彎曲方面來說,結構體系務必滿足:不能使建筑物產生傾覆;在承受荷載時,它的支撐體系的某些部位不應被壓屈、壓碎或者直接被拉伸破壞;同時彎曲側移不能超出彈性極限的范圍。而結構在抵抗剪力方面來說,結構體系務必滿足:建筑物不至于發生剪切破壞;同時結構的整體剪切側移不能超過彈性極限的范圍。最后對于結構的地基和基礎來說,由于高層建筑一般是高次不靜定結構,所以結構體系在支承點處應避免較大的不均勻變形,從而可以防止出現較大的二次內力。

1.2高層建筑結構的傳力路線

高層建筑的豎向平面結構和水平平面結構都必須有明確的傳力路線。以某個作用在樓面上的重力荷載為例,它要通過樓蓋構件的彎曲傳遞給豎向結構的某個構件,直到建筑物的基礎和地基。傳力路線的模式根據結構的類別和布置而異。高層建筑的底層往往只允許有少量的立柱,以便有足夠的空間可以設置寬敞的入口、前廳或廣場。這時,有較密柱間距的上層結構的重力荷載,就要通過另一種結構體系傳給底層立柱以及底層立柱基礎。當高層建筑的樓層平面有突變時(如樓層有收進,或由矩形平面變成其他形狀的平面時),或結構體系有變化時,它們的傳力路線也會發生改變,這時往往既要有豎向的轉換結構,也要有水平方向的轉換結構。在高層建筑結構傳力路線中還有一個區別于底層建筑結構的特殊問題,那就是高層建筑的每個立柱都承受著上層傳來的重力荷載,要考慮它們各自在施工和使用過程中豎向壓縮量的差異。這既要在設計中加以考慮,也要在施工過程中及時加以調整,以保證各層樓面的水平度,減小因不同柱的壓縮量有過大差異而引起的結構內力。

2概念設計

2.1抗關于側力構件合理布置規定

對于一個單獨的結構單元,在設計上的通常做法是,一般會盡力避免設計出應力集中的縮頸和凹角部位;而且盡量不要在這些部位設置樓、電梯間。整個結構外形也要避免外挑,尺寸內收也不宜過急,避免在結構上形成薄弱部位。最大限度地防止因局部結構或構件破壞,而出現全部結構失去承載力的情況。

2.2關于高寬比的規定

高寬比的規定是對結構整體剛度、整體穩定、抗傾覆能力、承載能力以及經濟合理性的綜合考慮,是長期工程經驗的總結,根據當前的實際工程來看,這一限值是比較經濟合理與實用。但隨著目前高層建筑的快速發展,設計師們發現其實高寬比并不是必須要滿足的。實際工程已有一些超過高寬比限制的例子(如深圳京基100大廈高441.8m,共100層,高寬比為9.5,天津117大廈,高597m,共117層,高寬比為9.7),當然高寬比超過限值時,應對結構進行更加準確的受力分析,并施加可靠的構造措施。

2.3短肢剪力墻的設置問題

在新的規范中,將墻肢截面高度與厚度比為5-8的剪力墻定義為短肢剪力墻,且根據試驗數據和實際經驗,對短肢剪力墻在高層建筑中的應用增加了相當多的限制。比如在剪力墻設計等級為四級,短肢剪力墻的配筋率要求是1%以上,而普通剪力墻則為0.2%。高厚比較小的構件的脆性破壞較大,不利于抗震。所以,在具體的高層結構設計里,設計師們應該充分利用其它現有構造形式來代替短肢剪力墻,減少不必要的麻煩。

2.4嵌固端的設置問題

在結構計算模型的選擇上,如何準確地確定嵌固端位置是一個十分關鍵的問題,這直接關系到實際的受力狀態與選擇的計算模型是否符合以及內力等相應計算結果是否無誤。因為現在高層結構通常會設有一層或者是二層的地下室(可以當作人防工程來使用),而嵌固端的選擇,可以結合各層的剛度變化,再根據它的實際布置狀況,可以選擇在一層頂板的位置,也可以是二層頂板的位置,同時在地下室其他樓層等部位也是有很大可能的。但是在這個問題上,結構設計師們往往會忽略了一系列需要注意的問題,例如嵌固端的設置和剛度比的限制等問題,忽視這些問題將會對工程的質量和后期數據的分析造成很大的隱患。

3地基與基礎結構設計

在基礎的具體設計中,應根據地基復雜程度、建筑物規模和功能特征以及由于地基問題可能造成建筑破壞或影響正常使用的程度來確定基礎設計等級。首先,地基計算應滿足承載力計算的有關規定;其次,由于高層建筑的基礎設計等級均為甲級或乙級,因此均應按地基變形設計;若地下室存在上浮問題時,還應進行抗浮驗算。下面就高層建筑中不同的基礎類型分別闡述在設計計算中應注意的事項:在對箱基和筏基的梁板進行配筋計算時,務必相應地扣除底板上直接作用的梁板荷載和自重,當出現箱筏的四邊區格和地基反力過大的情況,這時要對梁板進行加強配筋;而在進行箱基結構設計時,要考慮洞口上下的連梁的影響,驗算其截面面積,若洞口的位置或者大小有變動,要復核連梁的抗剪強度和抗彎強度;若是進行整體箱基和筏基的設計,必須考慮樁土的因素,其共同工作會對結構造成一定程度的影響。

4結構計算與分析

4.1結構整體計算的軟件選擇

當前比較常用的計算軟件一般包括:建科院PKPM其中的SAT-WE,MIDAS,ANYSYS,ETABS,SAP等。由于各個軟件使用的計算模型有一定區別,所以在各個軟件計算結果上就會有或大或小的差異。實際工程中,務必考慮結構類型和計算模型的具體特點,在進行整體分析時選擇最恰當的軟件,并使用不同軟件進行對比分析計算,從不同軟件計算的相差較大的結果中,選擇最接近工程實際情況的數據。若不能選擇合適的計算軟件,不但會消耗大量的時間和精力,更重要的是會對結構埋下安全隱患,造成日后的工程問題。所以為了保險起見,通常在布置復雜的高層設計中,宜使用不少于兩種不同的模型來進行內力分析和計算。

4.2剪力墻底部加強部位墻厚的確定

在進行抗震設計時,剪力墻的底部加強部位一般采取增加邊緣構件箍筋和墻體的布筋來防止地震荷載的影響,預防結構出現脆性破壞,從而能夠比較有效的改善結構的抗震性能,在現行的規范中,明確指出剪力墻結構底部加強部位的高度可以參考墻肢的1/8和底部兩層二者中的較大值;而部分框支剪力墻結構底部的取值,可考慮以上兩層的高度及墻肢總高度1/8中的較大值。一般情況下,高層建筑結構底部加強部位的剪力墻截面厚度bw的取法按照以下規定,按照一、二級級抗震標準的情況,bw宜選擇剪力墻無支長度的1/16或層高;按照三、四級抗震標準的情況,bw宜選擇剪力墻無支長度的1/20或層高。但在墻底受力較小且結構層高相對較高的情況下,其厚度還按上述要求取值,就顯得很不經濟。所以,根據具體的工程實踐,厚度可以適當減小,而且必須按照下面的公式計算穩定性。

5結束語

第2篇:建筑結構設計論文范文

關鍵詞:高層建筑結構設計;教學內容;教學方法;教學手段

高層建筑結構設計課程的教學內容涉及混凝土結構、結構力學、結構抗震等知識的綜合應用,作為培養從事土木工程設計、施工、預算、招投標工作的高級工程技術人才的土木工程專業,一般將高層建筑結構設計課程設置為一門專業限選課。土木工程專業畢業生的就業方向主要有結構設計、工程施工技術管理、預算和招投標等崗位,這些工作崗位都與高層建筑結構設計具有密切聯系。土木工程結構設計崗位的主要工作內容已由多層建筑設計轉變為高層建筑設計;從事土木工程施工管理工作,必須掌握高層建筑結構的識圖與讀圖等知識,清楚高層建筑中哪些是主要受力構件,哪些是構造構件,在施工過程中遇到一些簡單的高層事故應如何處理,等等,這些都有賴于該課程的學習;土木工程預算和招投標管理工作中大量的分析計算都要靠計算機來完成,要求工作人員要在看懂圖紙(很多是高層建筑圖紙)的基礎上建立分析模型,做到不多算、不漏算,這也有賴于該課程的學習。工程專業開設該課程的意義由此可見。但是,由于種種因素的影響,目前該課程教學中還存在不少現實問題。鑒于此,本文擬從教學內容、教學模式、教學方法、教學過程等方面探討高層建筑結構課程的教學改革問題,希望能為該課程教學質量的提高提供參考。

一、課程教學內容規劃

隨著我國經濟的發展,土建行業對人才的要求特別是對學生工程素質的要求越來越高,企業歡迎的是具有完備知識結構又具備較強工程能力的人才。高層建筑結構設計課程涉及很多計算,教學內容十分豐富,但該課程的學時往往十分有限,因此,合理選擇教學內容就顯得尤為重要。該課程教學內容的選擇應以應用型人才能力培養為目標,理論與實踐并重,并注意兼顧不同學習基礎的學生。土木工程專業一般將該課程安排在大學四年級第一學期,主要內容包括緒論、高層建筑結構的體系與布置、高層建筑結構的荷載和地震作用、高層建筑結構的計算分析和設計要求、框架結構設計、剪力墻結構設計、框架―剪力墻結構設計、高層建筑地下室和基礎設計等,與先修課程混凝土結構、混凝土結構與砌體結構、基礎工程、工程結構抗震等有緊密聯系,也存在一定的內容重復現象。為了保持教學內容的系統性,教師處理與已開設課程重復的內容時,應做到“重復的內容講差別,相似的內容講典型,突出重點”[1]。例如:荷載計算部分的一些內容與混凝土結構課程的相關內容相似,按照相似的內容講典型的原則,對該部分內容,教師應重點講解高層建筑結構的風荷載計算(考慮風震系數),而活荷載計算可不考慮不利布置;框架結構設計部分的一些內容,與混凝土結構與砌體結構等課程的相關內容存在重復現象,按照重復的內容講差別的原則,對該部分內容,教師應重點講解在框架結構設計中如何調整位移比、周期比、軸壓比、相鄰層剛度比、層間位移角、層間受剪承載力比等高規參數;高層建筑結構基礎設計部分的一些內容,與基礎設計和基礎工程課程存在內容重復現象,按照重復的內容講差別的原則,教師可重點講解高層建筑“筏板基礎”“樁基+筏板”設計中的常見錯誤及其原因。

二、課程教學模式

在開設高層建筑結構設計課程時,學生已具備一定的專業技能,但綜合能力還有待提高。采用多元化教學模式是近年來該課程教學的主要特點之一。根據高層建筑結構設計課程實踐性和操作性強的特點,教師應以促進學生提高實踐技能、掌握關鍵知識為主線,整合課程各個單元的教學內容開展任務驅動教學和項目導向教學,將“教、學、做”有機結合,著力體現應用性、實踐性和開放性的課程理念。將“教、學、做”一體化的教學模式有機融入教學過程,有利于處理“懂”與“會”的關系,學生可以先懂后會,也可以先會后懂或邊懂邊會。此外,教師還可以把課堂搬進實驗室、建筑設計院、工程施工現場等場所,廣泛開展直觀教學,實現課堂教學與實習實訓的一體化,從而有效提升學生的綜合能力。

三、課程教學方法與教學手段

高層建筑結構設計課程的教學環節分為課堂教學、PKPM軟件應用、工程設計實踐和考核[2]。以下從四個方面探討該課程的教學改革。

(一)課堂教學

課堂教學應以講解高層建筑結構設計的基本設計理論、抗震規范、高層混凝土結構技術規程等內容為主;要有明確的教學目標、有效的教學策略和具體的學習評價指標;要注重學生興趣的培養和潛能的發掘與提升,廣泛開展探究性學習和協作學習;要注意培養學生終身學習的觀念,力促學生自主發展和可持續發展。在高層建筑結構設計課程教學中,還應做到課堂講授、自學、討論相結合,課內學習與課外學習相結合,理論學習與實踐環節相結合[3]。第一,課堂講授與自學相結合。教師在課堂教學中應重點講授基本概念、基本原理和難點,并向學生指定課外自學的內容和思考題,以培養學生的自學能力,化解教學內容多而課時有限的矛盾。第二,開展課堂討論,啟發學生開展積極的思維活動[4]。大學生思想獨立性強,思維靈活,喜歡獨立思考問題。因此,在全班或小組內圍繞一個問題開展討論,讓學生各抒己見,相互啟發,有利于發揮學生學習的積極性和主動性,充分提高教學效果。如在高層結構選型內容的教學中,可讓學生以某“高層設計采用哪種結構體系較合理”為題在班級范圍內開展討論,讓學生在愉快的氛圍下通過主動思考掌握高層結構體系的有關知識。就課堂討論的方式來講,教師可先提出問題,讓學生在小組討論的基礎上,選出代表到黑板前陳述意見,這樣既可活躍課堂氣氛,提高教學效果,也可提高學生的表達能力。第三,課內學習與課外學習相結合。在每次課結束前,教師都應向學生明確課后的復習內容、預習內容及思考題。對于較抽象的教學內容,教師應組織學生開展課堂討論或課外學習小組(宜以宿舍為單位)討論。教師還可結合單元教學內容,組織開展以高層結構設計基本理論知識和常規應用為基礎的小型競賽活動,如PKPM建模大賽等,以鍛煉提高學生的知識運用能力。第四,理論教學與實踐教學相結合。筆者的調查表明,很多學生在學習過程中都感覺到“高層建筑混凝土結構技術規程”難以理解,難以聯系具體工程實例;結構設計只是停留在單個構件上,不明確結構整體設計的思路。因此,教師在教學中應結合具體教學內容引入工程實例,通過對工程實例的詳細講解,使學生加深對理論知識的理解,提高應用能力。比如,對高層建筑常用的三種結構,即框架結構、剪力墻結構、框架―剪力墻結構,教師可借助實際工程項目,依次詳細講解抗側力構件的布置、主要高規參數的控制、平面的布置、施工圖的繪制,通過實例講解使學生理清結構設計的整體思路,加深對規范條文的理解。需要說明的是,教師教學中選用的案例可以來自企業生產實踐,也可來自教師指導學生完成的工程設計實踐項目。教師指導學生進行工程設計實踐(包括結構選擇、結構建模、施工圖繪制等),是提高高層建筑結構設計課程教學質量的有效手段。

(二)PKPM軟件應用教學

PKPM軟件應用教學的重點是理解和掌握高層建筑結構設計的基本過程,主要有以下三個教學步驟:(1)結構布置的講解與練習。在此步驟中,要通過講解和練習,使學生掌握運用PKPM軟件建模的技巧,理解“抗規”關于結構平面和豎向布置的基本要求。結構平面布置要求平面形狀簡單、規則、對稱、質心和剛心重合[5]30−31;結構豎向布置的要求主要是抗側力構件沿豎向不突變等。(2)PKPM基本計算參數輸入練習。在此步驟中,應要求學生按照相關要求,結合工程結構的實際情況輸入PKPM相關參數,并理解基本風壓、基本雪壓、設計地震分組、抗震設防烈度、連梁剛度折減系數等參數的含義。(3)PKPM計算結果的分析判斷和參數調整。在此步驟中,應指導學生通過對計算結果的分析,判斷結構的周期比、位移比、剪重比、相鄰層剛度比、軸壓比、整體穩定是否滿足要求,并對不滿足要求的參數進行調整。

(三)工程設計實踐教學

開展高層建筑結構設計課程實踐教學,有利于學生強化工程概念和感性認識,激發學習主動性,提高創新能力。在工程設計實踐教學中,教師可以組織學生分組參觀調查當地已建高層建筑,了解其構型、結構體系、存在的施工問題等;可以讓學生以小組為單位完成高層建筑的建模,如15層以下教學樓、辦公樓、賓館等框架結構的建模,20層以下住宅樓等剪力墻結構的建模,20層以下寫字樓、公寓等框架―剪力墻結構的建模。

(四)課程考核

高層建筑結構設計課程的常規考核方法是筆試成績與平時成績相結合,但筆試成績一般占總成績的80%,這容易導致學生只重視理論而忽視實踐,不利于學生應用能力的提高。該課程的考核應著重考核學生綜合運用知識的能力,可采用筆試、上機操作、實踐環節相結合的考核方式。其中,筆試成績占總成績的50%,試卷的制作可參考國家“注冊結構工程師專業資格”考試;上機操作成績占總成績的20%,可以給定房屋建筑平面圖和立面圖,讓學生在規定時間內運用PKPM軟件完成滿足結構設計規范要求的結構建模;實踐環節成績占總成績的30%,內容包括考察報告的撰寫情況、在分組建模實踐教學中的表現等。

四、教學過程的組織

如前所述,在每次課結束前,教師都應向學生明確課后的復習內容、預習內容及思考題,其中預習的內容可以是參觀現有高層建筑結構,調查了解其結構形式、結構設計、施工中存在的問題等,并形成文字。導入新課時,教師可用5分鐘左右的時間了解學生的預習情況,并通過總結引出新課題。在講授新課的過程中,教師應突出重點,把握難點,可按照理論講授―例題解析―學生練習―歸納總結的步驟組織教學。如在講解高層建筑的結構體系時,可先分述每種結構體系的概念,再舉例分析典型的結構體系布置,然后讓學生畫出附近教學樓等高層建筑的結構,最后歸納總結常見建筑結構體系的選擇。課堂討論教學環節一般可采取學生自由發言與教師總結相結合的方式,而在安排有小組前期調研的情況下,應緊緊圍繞小組代表的匯報發言開展現場提問。另外,教師在課堂教學中還應引導學生主動到建筑設計院、工作室參觀實踐,以實現學以致用,不斷提高學生的實踐應用能力。例如,為了提高應用型技術人才培養質量,黃淮學院在其大學生創新創業園設置了建筑設計院校內實踐基地,為土木工程、建筑工程等專業學生的工程實踐提供了良好的平臺,教師引導學生到這里結合教學內容參觀實踐,無疑能夠有效地促進學生實現所學理論知識的內化和實踐應用能力的提升。

作者:邵蓮芬 單位:黃淮學院

參考文獻:

[1]牛海成,徐海賓.面向可持續發展的高層建筑結構設計課程教學改革探討[J].高等建筑教育,2013(22):72―75.

[2]劉圓圓.淺談《高層建筑設計》課程改革方案[J].城市建設理論研究:電子版,2014(36):8119―8120.

[3]孟麗巖,王濤,陳勇,等.高層建筑結構設計課程教學方法的改革與實踐[J].黑龍江教育(理論與實踐),2015(3):77―78.

第3篇:建筑結構設計論文范文

不確定性的地面運動的影響。地震動是地殼快速釋放能量過程中產生具有不確定性的多維振動,它是通過地震波的傳播實現的,它的隨機性和復雜性讓人難以預測。地震動的各個分量對建筑都具有危害作用,即一個豎向分量、兩個水平分量和一個轉動分量。地震災害具有突發性、破壞性、難以預測性,甚至是毀滅性的。結構動力特性的影響。影響結構動力分析的因素主要有:結構質量分布不均勻;基礎與上部結構的協同作用;節點的非剛性轉動;偏心扭轉可能使位移增加;柱的軸向變形可能會使周期變長,加速度降低;材料的影響。混凝土的彈性模量隨著時間的增長或應變的增大而降低,這意味著自振周期可能增長,而加速度反應將減小。阻尼變化的影響。鋼筋混凝土結構阻尼比受震松動以后會變大,且自振周期變長。基礎不同沉降量的影響。按一般荷載設計的框架結構,當地震系數大于0,基礎差異沉降可能造成實際彎矩與設計彎矩出現較大的誤差,而這種誤差在設計中一般未予考慮。建筑結構的施工質量。施工質量是影響結構抗震能力的一個重要因素。施工的任一環節都可能對建筑結構的抗震性能造成重要影響。這就是為什么“豆腐渣工程”的抗震性能總是和設計值相差甚遠。

2.建筑結構抗震設計方法

2.1結構地震分析法

結構抗震設計的首要任務就是對結構最大地震反應的分析,需要確定內力組合及截面設計的地震作用值。常用的地震分析法有底部剪力法、彈性時程分析方法、振型分解反應譜法、非線彈性靜力分析法以及非線彈性時程分析法。其中最為簡單的屬底部剪力法,其在質量、剛度沿高度分布較均勻的結構中較為適用。假設結構的地震反應以線性倒三角形的第一振型為主。并通過第一振型周期的估計來確定地震影響系數。對于較為復雜的結構體系,采用振型分解反應譜法來計算,它的思路就是根據振型疊加原理,將各種振型對應的地震作用、作用效應以一定方式疊加起來得到結構總的地震作用、作用效應。而彈性時程分析適用于特別不規則和特別重要的結構中,將建筑物看作彈性或彈塑性振動系統,直接輸入地面振動加速度記錄,對運動方程積分,從而得到各質點的位移、速度、加速度和剪力時程變化曲線。非線彈性時程分析法可以準確完整的反映結構在地震作用下反應的全過程。按非線彈性時程分析法進行抗震設計,能改善結構抗震能力和提高抗震水平。非線彈性靜力分析法考慮了結構彈塑性特性,在結構分析模型上施加某種特定傾向力模擬地震水平側向力,并逐級單調增大,構件一旦屈服,修改其剛度直到結構達到預定的狀態。

2.2建筑結構抗震設計方法

為了確保建筑結構的抗震能力最佳,所設計的結構在強度、剛度、延性及耗能能力等方面都達到最佳,質量分布均勻,平面對稱、規則抗側向力較好的體系及剛度與承載能力變化連續的結構體系是優先考慮的設計方案,從而經濟地實現“小震不壞,中震可修,大震不倒”的目的。

(1)根據我國的抗震設計規范,建筑持力層的選擇非常重要,它關系著整個建筑物的安全性能,同時規范還指出,建筑的形體要適當,要求建筑的形狀及抗側力構件的平面布置宜規則,并有整體性,不宜用軸壓比很大的鋼筋混凝土框架柱作為第一道防線。

(2)抗震結構體系布置是建筑結構抗震設計的關鍵問題,如房屋建造中框架結構體系和砌體結構的選擇問題。地震后會有余震,抗震結構體系應具有多道抗震防線。如框架結構設計中為了避免部分構件破壞而導致整個體系喪失抗震能力,將不承受重力荷載的構件用作傳遞途徑。

(3)傳統的結構抗震是通過增強結構本身的抗震性能(強度、剛度、延性)來抵御地震作用的,即由結構本身儲存和消耗地震能量。消能減震設計指在結構中設置消能器來消耗地震輸入的能量,減輕結構的地震反應,減小結構發生破壞和避免結構物直接倒塌以達到預期防震減震要求。隔震設計指在建筑物基礎與上部結構之間設置隔離層,即安裝隔震裝置,通過隔震裝置延長結構的基本周期,避免地震能量集中使結構發生屈服和破壞。這是一種以柔克剛積極主動的抗震對策,是一種新方法、新對策、新途徑。

(4)盡可能多設置幾道抗震防線,一個較好的抗震建筑結構由若干個延性較好的分體系組成,并由延性較好的結構構件連接協同工作。強烈地震之后往往伴隨多次余震,如果只有一道防線,則在第一次破壞后再遭余震,將會因損傷積累導致倒塌。如像教學樓這種相對大開間、單跨、大窗口、懸臂走廊的純框架結構,其縱、橫方向的剛度不均勻,很容易發生扭轉破壞,而整個結構只有框架一道防線,一旦柱子發生破壞,沒有其他約束措施,整個框架因喪失全部承載能力而倒塌。防止脆性和失穩破壞,增加延展性。設計不良的細部結構常常發生脆性和失穩破壞,應該防止。剛度的選擇有助于控制變形,在不增加結構的重量的基礎上,改變結構剛度,提高結構的整體剛度和延展性是有效的抗震途徑。

(5)場地條件就是導致建筑震害過于嚴重的關鍵因素,所以選擇最為有利的地形最大限度的防止建筑物出現在不利于抗震功能發揮的區域。選擇在抗震過于危險的區域來建造房屋,有可能對人們的生命財產安全帶來危害。在汶川地震時,北川縣城西的房屋建造在有滑坡隱患的山體之下,在地震的作用下,山體崩塌、滑坡,將大量的房屋掩埋,死亡1600人,損失慘重。

3結語

第4篇:建筑結構設計論文范文

關鍵詞:建筑結構 設計 選型 地基設計 構造

近年來,我國建筑業得到飛躍式的發展,與此同時,建筑結構設計的整體水平和設計方式等也發生了很大的變化。建筑結構設計人員在實際設計工作中,經常遇到一些問題,需要靈活、合理處理。

1建筑結構的合理選形

建筑物地面以上的結構形式對工程造價有很大影響。目前我國民用建筑結構形式主要有磚混結構、框架結構、框剪結構、剪力墻結構、裝配式大板、大模板結構、排架結構等。不同的建筑結構形式各有優劣,應比較各種結構的布置方案、受力體系及經濟性能,結合實際,因地制宜,綜合考慮以上因素,盡量采用適合本地區的經濟合理的結構形式,建設出低造價、高質量、高標準的民用建筑。

混合結構的造價僅為鋼筋混凝土框架結構造價的60%-70%,其鋼筋混凝土用量少,適用于7層以下的建筑物。但混合結構是由墻體承重,對墻體布置有一定要求,不如框架結構靈活,其使用功能受到限制。7層以上12層以下的建筑宜采用框架結構,在其合適的位置上設置幾道抗震剪力墻,可減小柱、梁的截面尺寸和配筋,從而達到節省材料的目的,且可以明顯提高建筑物的抗震能力。框一剪結構一般適用于12層以上20層以下的建筑物,為增強建筑物的整體剛度,可其適當的位置上設置剛性筒體,也可以起到節省材料的效果。

2 建筑結構布置不合理的處理策略

結構的合理布置(使結構盡可能“規則”),是抗震概念設計中的十分重要的環節,這里的“規則”包含了對建筑的平立面外形尺寸,抗側力構件布置、質量分布,直至承載力分布等諸多因素的綜合要求。由于引起結構不規則的因素太多,特別是對于復雜的建筑體型,很難一一用若干簡化的定量指標來劃分不規則程度并規定限制范圍。

由于缺乏規范依據及相應的設計規定,加之對結構抗震概念設計缺乏應有的了解,有些設計人員往往對結構規則性難以把握,有時甚至聽從業主和建筑師的要求,在實際工程中出現了不少規則性很差、對結構抗震十分不利的高層建筑。比如平面扭轉不規則問題,在框剪結構中,縱橫剪力墻布置過分集中或僅布置在房屋的一端,使結構剛度中心嚴重偏離質量中心。有時甚至是結構整體計算的第一振型為扭轉振型.

高位轉換問題,某高層建筑采用框支抗震墻結構,高度約160m,Ⅳ類場地,6度設防,不僅房屋高度大大超過其最大適用高度,且在第6~7層處設置了厚板轉換層,框支層數達到6層。框支抗震墻屬抗震不利的結構體系,新修編的抗震規范,對此類結構的抗震措施僅限于框支層不超過兩層;樓層錯層問題,高層建筑中帶有較大范圍的錯層,使樓層的樓板不連續,對結構抗震十分不利;高層建筑結構中,同時采用兩種以上的復雜結構,諸如帶轉換層結構、錯層結構、連體結構、多塔樓結構等,均屬于復雜結構形式,根據抗震對高層建筑規則性的要求,高層結構不宜同時采用兩種以上的復雜結構。

3 地基基礎設計中常見的問題

3.1樁基選型不合理或對樁基施工的可行性、成樁質量的可靠性及樁基施工對周圍環境的影響等方面考慮不夠充分。

如某高層建筑設計采用大直徑鉆孔灌注樁,樁尖需穿越6~8m的卵石層進入中風化巖1倍樁徑。按照現有的施工條件,樁尖穿越較厚的卵石層十分困難,成孔質量也較難保證,根據附近相似地質條件的工程經驗,以卵石層為持力層(無軟弱下臥層),并在樁端進入卵石層一定深度后進行樁底注漿,同樣能達到提高單樁承載力、減小樁基沉降的目的。

3.2單樁承載力取值出現偏差或缺乏計算依據

因成樁工藝不同,地基土對不同樁型的支承能力是不同的,即按規范經驗公式計算單樁豎向承載力時,對于不同的樁型,各土層的極限側阻力和極限端阻力是不同的。有的工程地質勘察報告僅提供了計算打入式預制樁的單樁承載力設計參數,而設計采用鉆孔灌注樁,并直接引用地質報告中的設計參數,使計算的單樁承載力出現偏差。某些工程場地原為河道或地勢較低,上部土層為松散的新近填土,樁基設計時直接按經驗公式計算單樁承載力或直接采用試樁提供的承載力數值,沒有考慮上部未固結(或欠固結)土層在固結沉降過程中可能引起的樁側負摩阻力的影響。驗算樁身承載力時,沒有考慮施工工藝系數ψc。或樁身壓曲的影響;對抗拔樁,僅計算樁身承載力,沒有進行樁身抗裂驗算。有地下室時,在按靜載試驗確定單樁承載力時,沒有扣除地下室深度范圍內的樁側摩阻力,由于基坑開挖后暴露時間不宜過長,試樁一般都在基坑開挖前進行,基坑開挖后,地下室深度范圍內的樁側摩阻力己不再存在。

3.3樁間距過小

樁間距過小,不滿足規范對樁的最小中心距的規定。特別是試樁、錨樁之間的間距,往往被設計人員忽視,直接影響試樁結果的正確性。

3.4樁身鋼筋籠長度不足

對擠土灌注樁,樁身鋼筋籠長度沒有穿越軟弱土層的層底深度,不滿足樁基規范((JGJ94-94)第4.1.1.2條“對于沉管灌注樁,配筋長度不應小于軟弱土層層底深度”的規定,這也是工程設計中常見的問題。

4鋼混結構構造方面存在的常見問題

4.1板-柱結構設計中存在的問題

板-柱結構的節點連接非常薄弱,不利于抗震,1988年的墨西哥地震充分說明了這一點。過去由于抗震規范和高規均沒有對板-柱結構作出相應的設計規定,使設計人員在板-柱結構的設計中帶有一定的隨意性和盲目性。

4.2異形柱結構設計中存在的問題

近年來,在我省的住宅建設中,特別是高層或小高層住宅,有些采用了異形柱結構。由于缺少相應的設計依據和規定,目前在異形柱結構設計中存在的問題很多,也比較突出,主要表現在異形柱結構房屋的高度超高、體型不規則、結構布置不合理、抗震構造措施不當等方面。應當說,目前國內對異形柱的受剪承載力、節點承載力和結構延性等方面的試驗研究還不多,對異形柱結構抗震性能的認識還不夠充分。在這種情況下,設計異形柱結構時,對房屋高度、結構規則性及抗震措施等方面宜從嚴掌握。

4.3結構縫設置不合理,縫寬度不足

對于超長建筑物,為減少溫度變化對結構的不利影響,合理地設置伸縮縫是必要的。有些設計人員提出用后澆帶代替伸縮縫,筆者認為此種做法并不一定妥當。因為后澆帶僅能減少混凝土材料干縮的影響,不能解決溫度變化的影響。后澆帶處的混凝土封閉后,若結構再受溫度變化的影響,后澆帶就不能再起任何作用了。對于不能或不便設置溫度伸縮縫的超長結構,除留設施工后澆帶外,還應采取其它構造加強措施,如加強頂層屋面的保溫隔熱措施,對受溫度變化影響較大的部位適當配置直徑較小、間距較密的溫度筋,或采用預應力混凝土結構等。地下室結構宜盡量不設縫,而采取其它技術措施來解決差異沉降問題,如采用樁基,使絕對沉降和差異沉降控制在允許范圍內,或在主裙樓之間留設施工后澆帶,待主樓封頂后再連成整體。地下室埋于土中,建成后受溫度變化的影響相對較小,因此對長度較長的地下室可采取留設后澆帶、采用補償收縮混凝土、局部提高配筋率等措施來解決混凝土干縮和溫度應力的影響。

參考文獻:

[1]李洪濤.我國建筑結構設計問題與展望分析[J].現代商貿工業.2010.07.

[2]魏利金.建筑結構設計常遇問題及對策[M].北京:中國電力出版社.2009.01.

[3]蔣曜州.淺談建筑結構設計配筋[J].中國電力教育.2008.01.

[4]趙健玲.建筑結構設計中常見錯誤分析[J].科技風.2009.16.

[5]何磊.對建筑結構設計中若干問題的探討[J].建材與裝飾.2008.01.

以上文章,雜志請不要郵寄給作者,請郵寄2本雜志到:

第5篇:建筑結構設計論文范文

湖南株洲某住宅小區由多棟多層和9~15層小高層住宅組成,框剪結構,總建筑面積為120000m2。以地上9層小高層為例,標準1層結構單元見圖1,層高3m;9層上有個躍層為第10層,局部突出屋面部分為電梯機房。建筑總面積為4337.18m2,建筑總高為27.600m。本工程建筑結構的安全等級為二級,抗震設防類別為丙類,按6度設防,地面粗糙度為C類,場地土類別為Ⅱ類。

2結構方案布置分析與選擇

原結構方案采用一般的剪力墻結構,這種結構形式對于房屋高度不太大的小高層建筑來說,這種結構會造成剛度過大,重量增加,導致地震反應過強,使得上部結構和基礎造價提高。所以,為了有效提高經濟指標,經多方案論證,決定采用短肢剪力墻結構體系。

短肢剪力墻結構是指墻肢截面高度為厚度5~8倍的剪力墻結構,和一般剪力墻相比,這種結構型式的優點在于:

1)墻肢較短,布置靈活,可調整性大,容易滿足建筑平面的要求。

2)減少了剪力墻而代之以輕質砌體,結構自重相應減輕,從而減小結構整體剛度,增大振動周期,降低地震作用力。

3)墻肢高寬比較大,延性較好,對抗震有利。

4)連梁跨高比較大,以受彎破壞為主,地震作用下首先在弱連梁兩端出現塑性鉸,能起到很好的耗能作用。

5)墻肢的承載力得到了較充分的發揮。

目前,《高層建筑混凝土結構技術規程》JGJ3-2002已對短肢剪力墻結構的設計作出了規定。

在本住宅結構平面布置中,盡量使結構平面形狀和剛度均勻對稱,短肢剪力墻雙向布置,盡量拉通、對直,豎向布置中,力求規劃均勻,避免有過大的外挑、內收,以及樓層剛度沿豎向突變,使整個房屋的抗側剛度中心靠近水平荷載合力的作用線,以免房屋發生扭轉。

根據建筑的平面布置,在房間、樓梯間、電梯間的四角,采用Z形、L形、T形或異形的墻肢。在設計過程中還應注意同周期的關系,使結構的第一自振周期避開場地土的卓越周期,以免地基與結構形成共振或類共振,既保證結構在風和地震荷載作用下的變形控制在規范允許的范圍內,又要保證建筑物有相對合理的自振周期,做到結構設計經濟、合理且實用。

本方案根據上述分析并經過多次調試,得到了4種結構方案,結構平面布置見圖2。剪力墻截面厚度同相鄰砌體填充墻厚度均為100mm。剪力墻、梁混凝土強度等級為C30。板的混凝土強度等級均為C25。主要連梁的尺寸大都為200mm×400mm。標準層樓板厚度為120mm,頂層樓板厚度為150mm,有別于肢長肢厚比不大于4.0的異形柱,短肢剪力墻的肢長肢厚比按規范要求控制在5~8范圍內,一般剪力墻的肢長肢厚比均大于8。值得注意的是,對肢長肢厚比為4~5范圍內的墻肢,目前規范尚無明確條文規定其構件類型,故設計時建議不要采用。

由于原方案的剪力墻過多,使底部剪力過大,使結構很不經濟,同時布置了少量鋼筋混凝土柱子,使結構不是很合理。故方案1在一般剪力墻結構的基礎上去掉了構造柱并減少了少量的剪力墻(見圖2a)。

在方案1基礎上適當的減少一些剪力墻,從而使方案更經濟,在調試過程中由于F軸剪力墻較少,從而使電梯間X方向的剪力墻承受過大的剪力造成超筋,故把電梯間X方向的剪力墻開洞口,使結構X向的剛度減少。(見圖2b)

方案3是在方案2的基礎上改善了Y方向的剛度,使兩個方向的剛度相接近,使結構更合理且均勻對稱(見圖2c)。

在方案3的基礎上把Y向的一些T型剪力墻變成一字型,雖然在多層、高層住宅設計中剪力墻結構應盡量避免一字型,但由于該結構的實際情況,所以采用了部分一字型(見圖2d)。

3上部結構設計計算結果分析

3.1計算結果分析

從構件力學特性上來說,短肢剪力墻的肢長與肢厚比≥5.0,更接近于剪力墻,故計算時將短肢剪力墻作為剪力墻而不是柱考慮應更合理。因此,結構整體計算采用中國建筑科學研究院開發的SATWE程序(2003年版)進行。SATWE采用的是在每個節點有六個自由度的殼元基礎上凝聚而成的墻元模擬剪力墻墻元不僅具有平面內剛度也具有平面外剛度,可以較好地模擬工程中剪力墻的真實受力狀態,計算結果較精確;同時,對樓板SATWE可以考慮其彈性變形。雖然主樓結構平面較規則,立面也無剛度突變現象,但由于剛度較大的電梯井處筒體有點偏置,會產生扭轉的影響,為了計算準確,地震作用計算考慮了結構的扭轉耦聯和5%偶然偏心的影響,取了27個振型計算。

1)自振周期的控制

考慮扭轉耦聯時的自振周期(計算時自振周期折減系數取0.8)如表1(只列了前6個)所示。從表1可得,方案4結構扭轉為主的第一自振周期T3=0.9959s,平動為主的第一自振周期T1=1.1656s,T3/T1=0.854<0.9,滿足(JGJ3-2002)

第4.3.5條的規定。

2)結構位移的控制

最大層間位移角(應≤1/1000)、最大水平位移與層平均位移的比值(不宜大于1.2,不應大于1.5)及最大層間位移與平均層間位移的比值(不宜大于1.2,不應大于1.5)見表2。從中可以看出,結構在風荷載和地震作用下的位移均能很好地滿足規范限值。

3)剪重比控制

剪重比是反映結構承受地震作用大小的指標之一,地震力計算不能偏大,但也不能太小。因為短肢剪力墻本身抵抗地震的能力較差,如果短肢剪力墻分配的地震力太大,則很有可能不滿足要求。本工程X方向的最小剪重比為4.50%,Y方向的最小剪重比為4.62%,根據“抗震規范”(5.2.5)條要求的X、Y向樓層最小剪重比均為3.20%,所以各層均滿足要求。

4)軸壓比是體現墻肢抵抗重力荷載代表值作用下的能力,“規范”對短肢剪力墻(尤其一字墻肢)要求更高一些。上述工程出現的短肢剪力墻軸壓比在0.20~0.45之間,軸壓比小于規范規定值。

3.2短肢剪力墻結構經濟性分析

為了與工程實際情況相符,假設混凝土的成本與混凝土的體積成正比,鋼筋的成本與鋼筋的體積成正比。在總造價上,暫不考慮模板及樓板等工程的造價影響。材料的單方造價混凝土為430元/m3,鋼筋4200元/t。表4為方案的經濟指標匯總,由表4知,方案4比一般剪力墻結構在總造價上要節約17.8%,使材料得到了充分的發揮。

4結語

本文針對小高層住宅的結構特點,采用短肢剪力墻結構,在比普通剪力墻結構方案節省投資17.8%的情況下,使結構受力更合理,整體變形能力和結構吸能能力對抗震更為有利。本工程剪力墻結構的薄弱環節是建筑平面外邊緣及角點處的墻肢,因而設計時在以上部位布置L型或一字型短肢墻,受條件所限也出現了少量一字型短肢墻,設計時嚴格控制其軸壓比<0.6,且相差不應太懸殊,避免墻肢應力差異過大。高層建筑中的連梁是一個耗能構件,對抗震不利。多、高層結構設計中允許連梁的剛度有所下降。但應注意短肢剪力墻結構中,墻肢剛度相對較小,連接各墻肢的梁已類似普通框架梁,而不同于一般剪力墻間的連梁,不應在計算的總體中將連梁的剛度大幅下調,使其設計內力降低,應按普通框架梁的要求進行設計。

參考文獻:

[1]高層建筑混凝土結構技術規程(JGJ3-2002)〔S〕1北京:中國建筑工業出版社,20021.

[2]建筑抗震設計規范(GB50011-2001)〔S〕1北京:中國建筑工業出版社,2001,1.

[3]李國勝.高層鋼筋混凝土結構設計手冊(第二版)〔M〕北京:中國建筑工業出版社,2003,1.

第6篇:建筑結構設計論文范文

1建筑結構設計的特點

1.1結構設計的延性特點

在建筑物使用的過程中,由于受到地震、風力以及沉降等因素的影響,建筑會發生一定的變形,尤其是一些高層建筑。為了避免高層建筑由于變形而發生損壞甚至倒塌現象,我們在對建筑結構設計的時候,需要采取一些措施使建筑物具有一定的結構延性,從而確保建筑結構的安全性。

1.2結構設計的水平荷載問題一般來說,在對一些低矮的建筑進行設計的時候,我們主要考慮的是豎向的荷載因素,而在一些高層建筑中,雖然豎向的荷載控制非常重要,但是,水平荷載則起著主要的決定性作用。鑒于此,在對一些高層建筑結構進行設計的時候,我們不僅要考慮豎向的荷載控制,更要注重水平荷載的影響,通過提高建筑結構水平荷載能力,進而增強建筑結構的穩定性和安全性。

1.3結構設計的抗震特點近年來,由于受到多種因素的影響,地震動發生頻率增多,對建筑造成了嚴重傷害。因此,現代建筑對抗震性能的要求也比較高。在這種形勢背景下,為了順應時展潮流和滿足現實發展需要,我們在對建筑結構進行設計的時候,還要考慮抗震要求,使建筑結構的質量達到小震不壞和大震不倒的標準,通過提高建筑結構的抗震性能,從而減少地震等自然災害對建筑的毀壞。

1.4結構設計的側移變形問題目前,為了節約有限的土地資源,高層建筑已經成為現代建筑發展的一種趨勢。高層建筑的水平荷載比較大,并隨著建筑高度的增加而增加,在一些因素的作用下,高層建筑就會發生一定的變形,使建筑的安全性大大降低。因此,在建筑結構設計的時候,我們要提高建筑的強度,使它具有良好的強度和剛度,有效控制側移變形的發生。

2建筑結構設計的原則

2.1選用合理的基礎方案基礎設計是建筑結構設計中一個重要的組成部分,在對建筑進行基礎設計的時候,我們需要綜合考慮周圍的地質條件、施工條件以及分析建筑結構的類型和荷載的分布等。總之,我們要從建筑實際情況出發,依據相關要求,選用合理的基礎方案。

2.2選擇適當的計算簡圖計算簡圖是建筑結構設計中一個關鍵環節,它是建筑結構的一種簡化形式,對建筑結構的安全性具有重要影響。因此,在建筑結構設計的時候,我們要選擇適當的計算簡圖,提高建筑結構設計的安全性,避免由于計算簡圖問題引發各種安全事故。

2.3選用科學的結構方案科學的結構方案是提高建筑結構設計水平的重要保證。因此,在對建筑結構結構進行設計的時候,我們要選用一個經濟性的方案,確保建筑結構形式和結構體系的可行性。比如,在建筑結構體系方面,同一結構單元最好采用相同的結構體系,并且達到受力明確,傳力簡潔的要求。簡而言之,在對建筑結構進行設計的時候,我們要綜合考慮施工現場的地質條件、選材以及設計要求等因素,從而選用一個更加科學的結構方案。

2.4采取一定的構造措施為了提高建筑結構設計的科學合理性,保證建筑結構的安全穩定性,在進行建筑結構設計的時候,我們還要采取一定的構造措施。比如,我們要注意鋼筋瞄固的長度,要關注構件的延性,要考慮溫度的應力作用等。通過這些構造措施的應用,可以在很大程度上保證建筑結構的質量。

3建筑結構設計的安全性

安全性是建筑結構設計中一個重要的問題。為了保證建筑結構的安全性,在對其進行設計的時候,我們需要關注以下幾個問題。第一,建筑設計中超高問題的處理。正如上文所述,在土地資源緊缺狀況下,現代建筑向著高層的方向發展。但是,為了保證高層建筑的安全性,在對建筑結構進行設計的時候,我們要對建筑的高度進行嚴格控制,避免由于樓層過高影響建筑的質量和抗震性能等。第二,建筑中短肢剪力墻的問題。在建筑施工中,為了保證建筑結構的抗側力,我們需要設置一定的剪力墻,而那些墻肢截面高厚比例是5—8的剪力墻,我們稱之為短肢剪力墻。短肢體剪力墻在應用過程中會受到很多限制,因此,在建筑結構設計中,如果條件允許,我們盡量少用甚至不用短肢剪力墻,避免給建筑結構設計增添一些不必要的麻煩。第三,建筑中嵌固端的問題。在建筑結構設計中,嵌固端位置的選擇也是一個不容忽視的問題。一般來說,大多數高層建筑都會有地下室,在對嵌固端進行設計的時候,我們可以把它設置在地下室的頂板位置,不僅有利于建筑結構的后期設計的順利進行,而且也更加安全,減少了建筑結構設計中的安全隱患。第四,建筑中的規則性問題。隨著建筑業的發展,我國建筑結構規則方面發生了很大的變化。比如,建筑設計中平面規則性的信息變化、建筑結構中嵌固端中上下層的剛度比的信息變化等。在對建筑結構進行設計的時候,設計工作人員要關注這些結構規則信息變化,并遵循新的規范,避免在建筑結構設計后期由于修改而增添麻煩。

4結束語

第7篇:建筑結構設計論文范文

關鍵詞:房屋建筑;結構分析;抗震設計

一、抗震設計的重要性

從我們現在的經濟發展狀況來講,城市人口越來越密集,房屋建筑也越來越多,若突然發生大的地震災難就會造成難以估量的損失。房屋建筑根本性質就是為了給人們提供一個安全舒適的住宿,為人們的一個防護所,避免人們經受風吹日曬以及其他極端天氣。地震則是我們目前所知的自然災害中最嚴重的一個災害,它所給人們造成極大的影響,地震不僅是簡單的震動,也會引起一系列海嘯、泥石流等自然災害,其破壞性不可小覷。由此可見,當一個破壞性極大的災難發生在人們最需要安全的避難所時,我們就不得不重視對于這一災難的防護。再加上我們目前生活水平的提高,我們目前對于房屋建筑的要求應該是更為舒適,使用壽命更強,這就進一步要求我們對于房屋建筑的整體抗震性有更加完善的技術從而更好地保證我們生活的舒適性。

二、房屋建筑結構抗震設計規定

在我國,房屋建筑結構抗震設計的標準一般分為特殊設防類、重點設防類、標準設防類、適度設防類等四個類別,簡稱甲、乙、丙、丁。在甲乙類建筑體系設計中應按高于本地區抗震設防烈度提高一度的要求加強其抗震措施,9度時應按比9度更高要求采取抗震措施。而丙類建筑應按本地區抗震設防確定其抗震措施。在丁類建筑中地震作用應按本地抗震設防烈度確定,但抗震措施(6度除外)允許比本地抗震設防烈度的要求適當降低。在多層和高層現澆鋼筋混凝土房屋的結構類型中,當平面和豎向均不規則的結構或建造于Ⅳ類場地的結構出現時,適用最大高度應適當減少。在鋼筋混凝土房屋抗震等級的要求中,它的抗震設計一般要滿足,如果是框架部分承受的地震傾覆力矩大于結構總地震傾覆力矩的50%的話,那么它的框架抗震等級應按框架結構來定。另外當地下室頂板作為上部結構的嵌固部位時,地下一層的抗震等級應與上部結構相同,地下一層一下抗震構造措施的抗震等級可逐層降低一級,但不應低于四級。地下室中無上部結構的部分,抗震構造措施的抗震等級可根據具體情況采用三級或者四級。對于那些筒體房屋結構抗震的設計要求來說,筒體部分與框架部分樓板一般采用梁板體系。在施工程序及連接構造上我們采取減小結構豎向溫度變形及軸向壓縮對加強層影響措施來解決。當低于9度采用加強層時,加強層的大梁或桁架與周邊框架柱的連接宜采用鉸接或半剛性連接。需要注意的是如果是9度的情況出現時就不要采用加強層了。

三、抗震設計在房屋建筑結構設計中的運用

抗震的設計在整個建筑中可以說是十分關鍵的一環,我們可以從一下幾個方面進行理解,從而體會抗震設計時如何在房屋建筑結構設計中進行運用,進而理解抗震設計在房屋建筑中的重要性。(1)提高房屋建筑結構的抗震力。抗震設計,顧名思義,就是保障房屋建筑能夠在地震時將其破壞程度保障到最小范圍。所以在進行房屋建筑結構的設計師,首先就要保障有一個穩固的地基。地基是整個建筑的基礎,其抗震性能也就在一定程度上決定著整個建筑的抗震能力。其次,房屋的整體結構上要建造抗震能力強的結構。比如我們知道的一些幾何圖形具有穩定的效能,我們就可以將其運用在房屋的結構當中。規則、對稱的建筑結構也能有利于保障房屋的穩定性,從而減少地震對于房屋建筑變形的影響。在房屋建筑中的一些小細節上注意到對于抗震的作用。(2)我們完善了房屋的抗震設計之后,可以再從地震一方面來思考如何降低地震作用對房屋建筑的影響。我們目前所采取的辦法就是在建筑物的基礎與主體之間加一個隔震層,也有人提出在建筑物的頂端部分設立一個“反擺”。這樣的設計首先能夠有效避免發生地震時建筑物之間互相碰撞,并且能夠有效緩解在地震來臨時房屋的震動幅度,從而保障房屋內部物品的安全。這樣的設想我們目前已經有所應用,在一些實際的經驗中我們也發現了這一方法的可行性。(3)保證建筑的剛度,建筑結構上的防護以及外部的防護之后,還有保障房屋建筑自身的堅硬程度。首先,就需要考慮到在進行建筑時,使用鋼筋混凝土材料,保障房屋的穩固。其次,就是在我們已有的建筑結構上對整個建筑進行進一步的加固。這一方面我們目前已經有相關的規定,明確告訴我們如何對于不同建筑類型進行不同的外層加固。目前,我們也仍需對于房屋建筑的使用材料進行進一步的探究,努力尋找優化建筑材料的辦法,能夠幫我們在建造房屋時一方面減少不必要的材料浪費,另一方面就是將優質的材料的性能充分地體現在房屋建筑整體的抗震性能上。

四、房屋建筑結構抗震設計措施

1.房屋建筑位置的選擇,房屋建筑位置的選擇在一定意義上來說決定著房屋質量的好壞,一般地地震可以導致房屋建筑周圍地表變化,這樣就會造成地基的開裂,導致房屋出現問題。因此在地理位置的選擇上,設計人員要對房屋建筑進行合理化選擇:如選擇開闊的堅硬場地,考慮場地土的剛度大小和場地覆蓋層的厚度等。2.房屋建筑材料的選擇,抗震性房屋建筑材料要選擇那些質量優等的材料。要綜合考慮保暖、防火等多種因素的存在,比如良好的鋼、鋁合金結構、木質結構及輕型復合材料等建筑材料作為主體材料。3.選擇合適的建筑結構體系,結構體系要滿足穩定性,要與建筑結構相配套。此外要注意建筑物傳力途徑的明確性,以及受力計算的明確性,保障在建筑體系中不使用轉換層,這樣就會保障有地震發生時候避免建筑傾斜或局部受損等現象的發生。4.做好底層框架抗震墻設計,鑒于我國的地震災害多數發生在底層,一般突出表現為“上輕下重”的這樣一個現象,所以在設計時候要突出底層的墻體比框架柱重,框架柱又要比梁重。這樣的設計就會在發生地震時底層破壞的程度比房屋的底層輕得多。5.鋼筋混凝土框架抗震內力設計。我們盡可能做到在地震作用下的框架呈現梁鉸型延性機構,為減少梁端塑性鉸區發生脆性剪切破壞的可能性,對梁端的剪力適當調整,使斜截面受剪承載力高于正截面受彎承載力,做到“強剪弱彎”。在實際運用中如不采取這個措施,柱端很可能比梁端先出現塑性鉸。因此適當調整柱計算內力并增大配筋,使塑性鉸首先出現在梁端,抗震性能較好。

五、結語

地震是人類生活面臨的重要的自然災害,危及著人民的生命與財產安全。在我國,目前人們對于房屋建筑無論是安全性還是舒適性的要求越來越高,房屋建筑行業不斷改善自己的設計和技術,不斷為人們提供更好更優質的服務。在建筑結構設計的時候,必須充分考慮抗震設計,并有采取適當的抗震措施,盡最大可能確保房屋質量,才能減少地震的危害。我們要進行不斷地探索,對于抗災設計有所重視,不斷改善我們的技術,建造更優質的建筑。

作者:王甲輝 單位:吉林供電公司

第8篇:建筑結構設計論文范文

關鍵詞:建筑結構設計 問題與措施

中圖分類號:S611文獻標識碼:A 文章編號:

在建筑工程領域中,建筑結構設計是極其重要的一個環節,它不同于其它專業設計,它的設計質量直接影響著工程周期、成本節約,可以說是一個工程中重要的生命線。但在實際設計工作中,常常發生結構設計上的種種概念和方法上的差錯,這些差錯的產生,有的是由于設計人員沒有對一般結構尤其是高層結構設計引起高度重視,盲目參照或套用其他的設計的結果;有的則是由于設計人員對設計規范和設計方法缺乏理解;還有的是由于設計人員的力學概念模糊,不能建立正確的計算模式,對結構電算結果也缺乏判斷正確與否的經驗。為了避免或減少類似的情況發生,確保結構設計質量能上一個臺階,建筑結構設計人員應注意以下常見問題:

首先:結構設計人員應該及早介入建筑的概念設計:建筑的概念設計在整個設計過程了起著舉足輕重的作用,一幢建筑物的設計,如果沒有事先經過全盤正確的概念設計,以后的計算模式再準確、計算再精確、配筋再合理。也不可能是一個經濟、合理的優秀設計工程。根據最新的地震區域劃分和規定,淮安的設防烈度規定為7度(局部6度)。結構設計無論是多層磚混或和框架剪力墻結構,都不同于以往的靜力設計。必須從抗震的角度,采用二階段設計來實現三個水準的設防要求。為此,結構設計人員必須及早介入建筑結構的概念設計,否則,將會導致建筑結構設計的不合理,給以后的結構設計帶來難度。為在建筑物的方案設計階段正確把握建筑結構的概念設計,應對不同形式的建筑形式,掌握各自概念設計中容易疏忽的要點:

其次:結構設計人員應該從結構計算進行合理設計:計算開始以前,設計人員首先要根據規范的具體規定和軟件手冊對參數意義的描述,以及工程的實際情況,對軟件初始參數和特殊構件進行正確設置。但有幾個參數是關系到整體計算結果的,必須首先確定其合理取值,才能保證后續計算結果的正確性。這些參數包括振型組合數、最大地震力作用方向和結構基本周期等,在計算前很難估計,需要經過試算才能得到。振型組合數是軟件在做抗震計算時考慮振型的數量。該值取值太小不能正確反映模型應當考慮的振型數量,使計算結果失真;取值太大,不僅浪費時間,還可能使計算結果發生畸變。《高層建筑混凝土結構技術規程》5.1.13-2條規定,抗震計算時,宜考慮平扭藕聯計算結構的扭轉效應,振型數不宜小于15,對多塔結構的振型數不應小于塔樓的9倍,且計算振型數應使振型參與質量不小于總質量的90%。一般而言,振型數的多少于結構層數及結構自由度有關,當結構層數較多或結構層剛度突變較大時,振型數應當取得多些,如有彈性節點、多塔樓、轉換層等結構形式。振型組合數是否取值合理,可以看軟件計算書中的x,y向的有效質量系數是否大于0.9。具體操作是,首先根據工程實際情況及設計經驗預設一個振型數計算后考察有效質量系數是否大于0.9,若小于0.9,可逐步加大振型個數,直到x,y兩個方向的有效質量系數都大于0.9為止。必須指出的是,結構的振型組合數并不是越大越好,其最大值不能超過結構得總自由度數。例如對采用剛性板假定得單塔結構,考慮扭轉藕聯作用時,其振型不得超過結構層數的3倍。如果選取的振型組合數已經增加到結構層數的3倍,其有效質量系數仍不能滿足要求,也不能再增加振型數,而應認真分析原因,考慮結構方案是否合理。

再次:結構設計人員應該從結構構造上進行合理設計

1、建筑超長結構設計問題與措施:

混凝土設計結構設計規范(GB50010-2010)規定其框架結構最大伸縮縫間距應為五十五米,同時規定在分段后澆帶施工進程中應用可降低混凝土變化溫度、預加應力措施或收縮措施并包含一定的充分依據,則我們可適應性提升伸縮縫間距。對于上述兩條規范在實踐設計中我們較難把握,對于建筑工程中一旦高于五十五米便進行伸縮縫設置這一點顯然較難保證,而進行分段后澆帶施工之后應具體將房屋長度控制在多少會不引發裂縫也較難掌握。筆者認為這一問題受到各區域溫差以及不同混凝土收縮應力的影響。例如一些南方區域,建筑單層房屋高于五十五米并控制在七十米范疇中,則采用后澆帶施工設置與構造強化措施而不進行伸縮縫設置通過實踐證明是具有可行性的。同時在建筑結構設計中我們應在概念上對梁柱配筋實施必要調整。即我們應雙層設置長向板鋼筋,適應性強化梁板中部區配筋,對于量測梁柱尤其是邊跨柱配筋我們應適應性強化進而有效抵御溫度應力產生的推力,對建筑超長結構容易在角部形成扭轉效應的我們需對其結構適應性強化。

2、設置板面溫度應力筋問題與措施

相關建筑結構混凝土設計標準規定在較大溫度應力現澆板范疇中應取得鋼筋間距為一百五十毫米至二百毫米,應于末配筋板表面進行溫度收縮鋼筋布置,沿縱橫方向上下板表面配筋率則不應低于百分之零點一,該條規定容易令設計人員產生理解出入。那么怎樣的區域屬于較大的收縮溫度應力范疇呢,我們認為較短規則建筑物我們可位于屋面層或各樓面邊跨相應設置溫度應力鋼筋,對各類超長結構建筑我們則可在其長向進行雙層鋼筋設置。其余部位我們可因人而異,對于重要功能區域的設置一些有條件的工程子項目不必過分強調。同時對于地下室具有較大厚度筏板且超過一千二百毫米時,我們應位于中間筏板進行收縮溫度應力鋼筋的科學配置進而有效抵御大體積混凝土形成的溫度與收縮應力,配筋量應取筏板厚度的一半的百分之零點一。

3、強柱弱梁設計問題與措施

強柱弱梁建筑結構設計原則與理念主要基于小震不破壞、中度地震可維修、大型地震不倒塌的目標創設,建筑梁遭到破壞僅為某建筑區域構件被影響并發生失效,而倘若建筑工程的柱結構遭到破壞,則整體建筑項目工程均會遭到不同程度的損傷,由此可見破壞柱要比破壞梁產生更為嚴重的不良后果。因此設計建筑結構人員在實踐過程中應堅持該設計理念,嚴格進行柱軸壓比的控制,目前大多數建筑結構設計計算均參照小震開展。倘若小震影響下產生過高的柱軸壓,則在大震災害影響下便會對邊柱形成較大附加軸力,令其遭到大震的嚴重損毀。因此為杜絕該類不良破壞影響我們應明確設計相關設計標準,即建筑軸壓比設計不應高于百分之零點九,同時在設置柱斷面與配筋階段,我們應分部位進行科學處理,應適度加強角柱與邊柱,并確保全柱的密集箍筋,控制配筋率應大于百分之一,不包含小截面柱的框架柱其縱筋均需要高于二十,柱筋種類的選擇應得到有效控制,即盡量控制其在較小數量水平中,配筋應盡量與矩形截面柱保持良好的對稱性。

三、結語

第9篇:建筑結構設計論文范文

關鍵詞:建筑結構;抗震設計;若干問題;思考

中圖分類號:TU3文獻標識碼: A 文章編號:

隨著經濟的發展和城市化進程的加快,城市中的高層建筑逐漸增多,建筑的安全性和穩定性受到人們的關注,設計者需要加強對建筑的抗震性設計,減少建筑在地震災害中的破壞,提高建筑的抗震能力。建筑結構的抗震設計是專業性技術性極強的工作,設計者需要加強抗震場地的選擇,提高建筑的整體性和剛度,合理的計算建筑結構的參數,整體上提升建筑結構的抗震性。

建筑結構抗震的基本要求

1、結構構件要具備相關性能。建筑結構的構件是建筑的重要組成部分,構件要具備必要的穩定性、承載力、延性和剛度,建筑結構設計上應該遵循強柱弱梁、強剪弱彎和更強節點核芯區的設計原則,結構的薄弱部位應該進行重點的設計,已經承載了豎向荷載的構件不宜作為主要的耗能構件,結構的構件要滿足建筑抗震性的要求。

2、抗震防線的設置。建筑結構抗震性設計是建筑設計的重要組成部分,設計者需要按照建筑設計的要求來設置抗震防線,實現結構構件之間的協同作業。建筑多道抗震防線設置的目的是減少地震對建筑的損壞,實現建筑的內部和外部贅余度設計,建立建筑的屈服區,提高構件的適當剛度和延性,處理好建筑結構內部的強弱關系。建筑抗震防線的設計要避免部分設計過強和部分設計過弱的問題,避免建筑的不合理設計,提高建筑的穩定性設計。

3、加強薄弱部位的抗震性設計。建筑抗震性的設計需要從整體的角度進行,薄弱部位的結構部件要加強設計,提高構件的實際承載力。設計者要實現設計計算的彈力值和實際受力值之間的均勻變化,防止變形力的集中,實現建筑部件之間承載力和剛度的協調。設計者要在設計的過程中有目的加強薄弱部位的抗震設計,對建筑的變形能力進行控制,提高建筑的總體抗震能力。

二、建筑結構抗震設計的關鍵環節

1、抗震場地的選擇。施工場地的地質情況直接影響著建筑的穩定性,建筑結構的抗震性設計需要加強對地基的勘察和檢驗,在地基穩定性不足的情況下要對樁基進行施工,加強地基的穩定性,減輕地震災害對建筑的影響。設計者需要選擇有利的建筑抗震場地,在加強建筑本身穩定性的基礎上減小地基等外部因素對建筑穩定性的影響。在施工場地無法滿足有利抗震要求的情況下,設計人員和施工人員可以首先加強地基的穩定性,采取地基液化的方式來消除地基的缺陷,提高建筑上部結構的穩定性。

2、建筑結構的選型和布置要求。現在城市中的高層建筑逐漸增多,建筑的形式逐漸多樣化,設計者需要在加強形態設計的同時提高建筑的穩定性。一般而言,建筑的抗震性要求建筑結構形狀應該簡單,建筑的凹角是不可避免的,房屋突出部分的長度應和寬度保持一定的比例,房屋立面的局部收進尺寸應該嚴格按照建筑設計的要求進行設計,結構平面長度不應該過大。此外,設計者還要實現建筑平立面質量和剛度分布的均勻和對稱,減小建筑的剛度偏心,對建筑薄弱部位的構件要進行充分的計算和設計,避免構件的變形,實現建筑內部結構的對稱性。設計者可以對地震縫進行利用,將建筑的結構分成具有規則和簡單的小單元。

3、建筑的整體性和剛度設計。城市中的高層建筑都是具有空間剛度的由樓蓋和承重構件組成的結構體系,建筑的抗震性主要是由建筑的穩定性和空間的剛度來決定的,剛性樓蓋實現了地震作用的分配。近年來,鋼筋混凝土在建筑結構中得到了重要的應用,現場澆筑的鋼筋混凝土具有水平剛度大和整體性好的優點,可以有效的避免散落和滑移問題,增加建筑整體性,是比較理想的建筑抗震構件。鋼筋混凝土樓板還可以控制建筑的層間變形,實現荷載的有效傳遞,減輕樓板和墻體之間的約束力。因此,設計者需要對現行的現澆混凝土結構進行研究,通過增設構造柱和配置鋼筋的方法來加強建筑的整體性,提高建筑的空間強度,整體上提升建筑的抗震性能。

4、建筑結構參數的計算。建筑抗震性設計中包括了房屋構件的變形計算和墻梁柱板的承載力計算,設計者在計算之前需要根據建筑的實際要求和建筑設計規范來建立有效的計算模型,根據模型來簡化建筑構件的計算和處理。設計者可以將有關的數據輸入到計算機中,對復雜構件的變形和內力進行系統的分析和計算,設計者要對結構的位移、自振周期、層間剛度比、扭轉系數以及剪重比進行計算,對結構的扭轉效應進行考慮。建筑抗震性設計是專業性技術性極強的工作,構件的計算和分析工作很難一次完成,設計者要在設計理論和設計模型的指導下對試算的結果進行反復的調整,提高建筑防震性設計的合理性。

5、建筑結構的延性抗震設計。結構延性是建筑抵御地震災害的關鍵,結構的延性抗震設計是建筑抗震設計的重要組成部分。設計者要按照強柱弱梁的原則進行設計,將柱截面的彎矩進行增大設計,對控制截面的整體承載力進行精確設計。構件抗剪能力是建筑抗震性的重要組成部分,設計者要人為的增大構件抗剪能力,通過增大剪力墻端、梁柱節點、柱端和梁端的系數來提高建筑的剪力值,提高驗算和設計的精確度,減小建筑在地震中的剪切破壞。此外,設計者還要提高建筑的塑性耗能能力和建筑的塑性轉動能力,對可能出現塑性鉸的部位進行重點的設計,加密箍筋,對軸壓比進行有效的限制,提高建筑整體穩定性。

三、我國建筑抗震性設計中存在的問題

建筑抗震性要求是建筑穩定性和安全性的關鍵,設計者要按照設計規范和建筑抗震要求來加強對關鍵設計環節的控制,整體上提升建筑抗震性的設計質量。在建筑抗震性設計的過程中也存在建筑高度、建筑結構體系、材料選用以及軸壓比等問題,設計者需要采取有效的措施進行預防。首先,建筑高度需要符合城市發展的需要,要和施工技術和城市發展水平相適應。其次,設計者要進行轉換層和加強層的設計,提高柱結構的抗剪力程度,盡量選用混凝土結構。再次,短柱和軸壓比問題會大大削弱結構的延性和塑性變形能力,設計者要加強強柱弱梁設計,對柱的剪跨比和軸壓比進行確定,避免短柱問題的發生,按照建筑的施工要求進行軸壓比限值的調整。此外,設計者還要提高建筑結構設計的安全度系數,對抗震設計的原則進行重新的審視,提高建筑的抗震設防烈度,采用彈性設計來提高建筑的安全性,減輕地震對建筑安全性和穩定性的破壞。

結語:

隨著經濟的進步和城市建設進程的加快,城市中的高層建筑甚至是超高層建筑逐漸增多,建筑的抗震性設計逐漸受到人們的關注。建筑結構抗震性設計是專業性技術性極強的工作,設計者需要加強對建筑場地的選擇,對建筑構件和整體的彈性和塑性進行設計,利用計算機來提高各項參數的準確性和可靠性,整體上提升建筑的穩定性設計,減輕建筑在地震災害中的損失。

參考文獻:

[1] 趙西安.高層建筑結構抗震設計的一些建議[J]. 工程抗震. 2011(04)

[2] 魏璉.水平地震作用下不對稱建筑的抗震計算[J]. 建筑科學. 2010(01)

主站蜘蛛池模板: 察隅县| 平利县| 喀喇| 徐水县| 攀枝花市| 东乡县| 青州市| 松江区| 大同市| 万源市| 临安市| 赣榆县| 巧家县| 阳东县| 平泉县| 剑川县| 奇台县| 秭归县| 竹溪县| 五常市| 肃宁县| 通渭县| 井冈山市| 南郑县| 龙江县| 房产| 兰西县| 古交市| 颍上县| 邢台县| 彭州市| 云梦县| 芜湖市| 堆龙德庆县| 乐山市| 博兴县| 泽普县| 麻阳| 邵阳县| 安康市| 丹凤县|